ON the evolution and survival of protoplanets embedded in a protoplanetary disk

A. Vazan, R. Helled

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


We model the evolution of a Jupiter-mass protoplanet formed by the disk instability mechanism at various radial distances accounting for the presence of the disk. Using three different disk models, it is found that a newly formed Jupiter-mass protoplanet at a radial distance of ≲5-10AU cannot undergo a dynamical collapse and evolve further to become a gravitational bound planet. We therefore conclude that giant planets, if formed by the gravitational instability mechanism, must form and remain at large radial distances during the first ∼105-106 years of their evolution. The minimum radial distances in which protoplanets of 1 Saturn-mass, 3 and 5 Jupiter-mass protoplanets can evolve using a disk model with M = 10-6 M yr1 and α = 10-2 are found to be 12, 9, and 7AU, respectively. The effect of gas accretion on the planetary evolution of a Jupiter-mass protoplanet is also investigated. It is shown that gas accretion can shorten the pre-collapse timescale substantially. Our study suggests that the timescale of the pre-collapse stage does not only depend on the planetary mass, but is greatly affected by the presence of the disk and efficient gas accretion.

اللغة الأصليةالإنجليزيّة
رقم المقال90
دوريةAstrophysical Journal
مستوى الصوت756
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 سبتمبر 2012
منشور خارجيًانعم


أدرس بدقة موضوعات البحث “ON the evolution and survival of protoplanets embedded in a protoplanetary disk'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا