On non-{0, 1, 1/2} extreme points of the generalized transitive tournament polytope

Zeev Nutov, Michal Penn

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

The acyclic tournaments of order n form the linear ordering polytope PnLO. The generalized transitive tournaments of order n form the polytope PnC, which contains the linear ordering polytope. It is known that the integral extreme points of PnC coincide with those of PnLO. Dridi showed that PnLO = PnLO for n ≤ 5, while for n > 5 PnLO ⊂ PnC. Borobia gave a complete characterization of the extreme points of PnC with values in {0, I, 1/2}. It was mentioned by Brualdi and Hwang that no extreme points of PnC with values not in {0, 1, 1/2) are known. In this paper we present a method for obtaining a family of extreme points of PnC with values not in {0, 1, 1/2}. We also prove that these non-half-integral extreme points of PnC violate certain diagonal inequalities which are facet defining for PnLO.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)149-159
عدد الصفحات11
دوريةLinear Algebra and Its Applications
مستوى الصوت233
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 15 يناير 1996
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “On non-{0, 1, 1/2} extreme points of the generalized transitive tournament polytope'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا