On metric Ramsey-type phenomena

Yair Bartal, Nathan Linial, Manor Mendel, Assaf Naor

نتاج البحث: نشر في مجلةمقالة مرجعية مراجعة النظراء


The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky's theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any ε > 0, every n point metric space contains a subset of size at least n1-ε which is embeddable in Hilbert space with O ( log(1/ε)/ε) distortion. The bound on the distortion is tight up to the log(1/ε) factor. We further include a comprehensive study of various other aspects of this problem.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)643-709
عدد الصفحات67
دوريةAnnals of Mathematics
مستوى الصوت162
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - سبتمبر 2005
منشور خارجيًانعم


أدرس بدقة موضوعات البحث “On metric Ramsey-type phenomena'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا