On approximating the achromatic number

Guy Kortsarz, Robert Krauthgamer

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


The achromatic number problem is to legally color the vertices of an input graph with the maximum number of colors, denoted ψ* , so that every two color classes share at least one edge. This problem is known to be NP-hard. For general graphs we give an algorithm that approximates the achromatic number within a ratio of O(n - log log n/ log n). This improves over the previously known approximation ratio of O(n/ √log n), due to Chaudhary and Vishwanathan [Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 1997, pp. 558-563]. For graphs of girth at least 5 we give an algorithm with an approximation ratio O(min{n1/3, √ψ*}). This improves over an approximation ratio O(√ψ*) = O(n3/8) for the more restricted case of graphs with girth at least 6, due to Krysta and Loryś [Proceedings of the Seventh Annual European Symposium on Algorithms, Lecture Notes in Comput. Sci. 1643, Springer-Verlag, Berlin, 1999, pp. 402-413]. We also give the first hardness result for approximating the achromatic number. We show that for every fixed ε > 0 there is no 2 - ε approximation algorithm, unless P = NP.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)408-422
عدد الصفحات15
دوريةSIAM Journal on Discrete Mathematics
مستوى الصوت14
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - مايو 2001


أدرس بدقة موضوعات البحث “On approximating the achromatic number'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا