Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Brain-inspired hardware designs realize neural principles in electronics to provide high-performing, energy-efficient frameworks for artificial intelligence. The Neural Engineering Framework (NEF) brings forth a theoretical framework for representing high-dimensional mathematical constructs with spiking neurons to implement functional large-scale neural networks. Here, we present OZ, a programable analog implementation of NEF-inspired spiking neurons. OZ neurons can be dynamically programmed to feature varying high-dimensional response curves with positive and negative encoders for a neuromorphic distributed representation of normalized input data. Our hardware design demonstrates full correspondence with NEF across firing rates, encoding vectors, and intercepts. OZ neurons can be independently configured in real-time to allow efficient spanning of a representation space, thus using fewer neurons and therefore less power for neuromorphic data representation.

اللغة الأصليةالإنجليزيّة
رقم المقال627221
دوريةFrontiers in Neuroscience
مستوى الصوت15
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 22 فبراير 2021

ملاحظة ببليوغرافية

Publisher Copyright:
© Copyright © 2021 Hazan and Ezra Tsur.

بصمة

أدرس بدقة موضوعات البحث “Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا