ملخص
An important problem in multiview representation learning is finding the optimal combination of views with respect to the specific task at hand. To this end, we introduce NAM: a Neural Attentive Multiview machine that learns multiview item representations and similarity by employing a novel attention mechanism. NAM harnesses multiple information sources and automatically quantifies their relevancy with respect to a supervised task. Finally, a very practical advantage of NAM is its robustness to the case of dataset with missing views. We demonstrate the effectiveness of NAM for the task of movies and app recommendations. Our evaluations indicate that NAM outperforms single view models as well as alternative multiview methods on item recommendations tasks, including cold-start scenarios.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
الصفحات | 3357-3361 |
عدد الصفحات | 5 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781509066315 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - مايو 2020 |
منشور خارجيًا | نعم |
الحدث | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, أسبانيا المدة: ٤ مايو ٢٠٢٠ → ٨ مايو ٢٠٢٠ |
سلسلة المنشورات
الاسم | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
مستوى الصوت | 2020-May |
رقم المعيار الدولي للدوريات (المطبوع) | 1520-6149 |
!!Conference
!!Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
الدولة/الإقليم | أسبانيا |
المدينة | Barcelona |
المدة | ٤/٠٥/٢٠ → ٨/٠٥/٢٠ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2020 IEEE.