TY - JOUR
T1 - Multipartite secret sharing by bivariate interpolation
AU - Tassa, Tamir
AU - Dyn, Nira
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2009/4
Y1 - 2009/4
N2 - Given a set of participants that is partitioned into distinct compartments, a multipartite access structure is an access structure that does not distinguish between participants belonging to the same compartment. We examine here three types of such access structures: two that were studied before, compartmented access structures and hierarchical threshold access structures, and a new type of compartmented access structures that we present herein. We design ideal perfect secret sharing schemes for these types of access structures that are based on bivariate interpolation. The secret sharing schemes for the two types of compartmented access structures are based on bivariate Lagrange interpolation with data on parallel lines. The secret sharing scheme for the hierarchical threshold access structures is based on bivariate Lagrange interpolation with data on lines in general position. The main novelty of this paper is the introduction of bivariate Lagrange interpolation and its potential power in designing schemes for multipartite settings, as different compartments may be associated with different lines or curves in the plane. In particular, we show that the introduction of a second dimension may create the same hierarchical effect as polynomial derivatives and Birkhoff interpolation were shown to do in Tassa (J. Cryptol. 20:237-264, 2007).
AB - Given a set of participants that is partitioned into distinct compartments, a multipartite access structure is an access structure that does not distinguish between participants belonging to the same compartment. We examine here three types of such access structures: two that were studied before, compartmented access structures and hierarchical threshold access structures, and a new type of compartmented access structures that we present herein. We design ideal perfect secret sharing schemes for these types of access structures that are based on bivariate interpolation. The secret sharing schemes for the two types of compartmented access structures are based on bivariate Lagrange interpolation with data on parallel lines. The secret sharing scheme for the hierarchical threshold access structures is based on bivariate Lagrange interpolation with data on lines in general position. The main novelty of this paper is the introduction of bivariate Lagrange interpolation and its potential power in designing schemes for multipartite settings, as different compartments may be associated with different lines or curves in the plane. In particular, we show that the introduction of a second dimension may create the same hierarchical effect as polynomial derivatives and Birkhoff interpolation were shown to do in Tassa (J. Cryptol. 20:237-264, 2007).
KW - Bivariate interpolation
KW - Compartmented access structures
KW - Hierarchical threshold access structures
KW - Monotone span programs
KW - Multipartite access structures
KW - Secret sharing
UR - http://www.scopus.com/inward/record.url?scp=64249091460&partnerID=8YFLogxK
U2 - 10.1007/s00145-008-9027-9
DO - 10.1007/s00145-008-9027-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:64249091460
SN - 0933-2790
VL - 22
SP - 227
EP - 258
JO - Journal of Cryptology
JF - Journal of Cryptology
IS - 2
ER -