ملخص
Large Vision-Language Models (LVLMs) are an extension of Large Language Models (LLMs) that facilitate processing both image and text inputs, expanding AI capabilities. However, LVLMs struggle with object hallucinations due to their reliance on text cues and learned object co-occurrence biases. While most research quantifies these hallucinations, mitigation strategies are still lacking. Our study introduces a Language Contrastive Decoding (LCD) algorithm that adjusts LVLM outputs based on LLM distribution confidence levels, effectively reducing object hallucinations. We demonstrate the advantages of LCD in leading LVLMs, showing up to 4% improvement in POPE F1 scores and up to 36% reduction in CHAIR scores on the COCO validation set, while also improving captioning quality scores. Our method effectively improves LVLMs without needing complex post-processing or retraining, and is easily applicable to different models. Our findings highlight the potential of further exploration of LVLM-specific decoding algorithms for improved multimodal performance.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference |
المحررون | Lun-Wei Ku, Andre Martins, Vivek Srikumar |
ناشر | Association for Computational Linguistics (ACL) |
الصفحات | 6008-6022 |
عدد الصفحات | 15 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9798891760998 |
حالة النشر | نُشِر - 2024 |
منشور خارجيًا | نعم |
الحدث | Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, تايلند المدة: ١١ أغسطس ٢٠٢٤ → ١٦ أغسطس ٢٠٢٤ |
سلسلة المنشورات
الاسم | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
رقم المعيار الدولي للدوريات (المطبوع) | 0736-587X |
!!Conference
!!Conference | Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 |
---|---|
الدولة/الإقليم | تايلند |
المدينة | Hybrid, Bangkok |
المدة | ١١/٠٨/٢٤ → ١٦/٠٨/٢٤ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2024 Association for Computational Linguistics.