Metric structures in L1: Dimension, snowflakes, and average distortion

James R. Lee, Manor Mendel, Assaf Naor

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرفصلمراجعة النظراء

ملخص

We study the metric properties of finite subsets of L1. The analysis of such metrics is central to a number of important algorithmic problems involving the cut structure of weighted graphs, including the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation. Additionally, many open questions in geometric non-linear functional analysis involve the properties of finite subsets of L1. We present some new observations concerning the relation of L1 to dimension, topology, and Euclidean distortion. We show that every n-point subset of L1 embeds into L2 with average distortion O(√log n), yielding the first evidence that the conjectured worst-case bound of O(√log n) is valid. We also address the issue of dimension reduction in Lp for p ∈(1,2). We resolve a question left open in [1] about the impossibility of linear dimension reduction in the above cases, and we show that the example of [2,3] cannot be used to prove a lower bound for the non-linear case. This is accomplished by exhibiting constant-distortion embeddings of snowflaked planar metrics into Euclidean space.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
المحررونMartin Farach-Colton
ناشرSpringer Verlag
الصفحات401-412
عدد الصفحات12
رقم المعيار الدولي للكتب (المطبوع)3540212582, 9783540212584
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2004
منشور خارجيًانعم

سلسلة المنشورات

الاسمLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
مستوى الصوت2976
رقم المعيار الدولي للدوريات (المطبوع)0302-9743
رقم المعيار الدولي للدوريات (الإلكتروني)1611-3349

بصمة

أدرس بدقة موضوعات البحث “Metric structures in L1: Dimension, snowflakes, and average distortion'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا