Metric cotype

Manor Mendel, Assaf Naor

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

We introduce the notion of cotype of a metric space, and prove that for Banach spaces it coincides with the classical notion of Rademacher cotype. This yields a concrete version of Ribe's theorem, settling a long standing open problem in the nonlinear theory of Banach spaces. We apply our results to several problems in metric geometry. Namely, we use metric cotype in the study of uniform and coarse embeddings, settling in particular the problem of classifying when Lp coarsely or uniformly embeds into Lq. We also prove a nonlinear analog of the Maurey-Pisier theorem, and use it to answer a question posed by Arora, Lovász, Newman, Rabani, Rabinovich and Vempala, and to obtain quantitative bounds in a metric Ramsey theorem due to Matoušek.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)247-298
عدد الصفحات52
دوريةAnnals of Mathematics
مستوى الصوت168
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - يوليو 2008

بصمة

أدرس بدقة موضوعات البحث “Metric cotype'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا