ملخص
Let (X,dX) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f: X → T such that for every x ∈ X, → where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 581-615 |
عدد الصفحات | 35 |
دورية | Combinatorica |
مستوى الصوت | 30 |
رقم الإصدار | 5 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - سبتمبر 2010 |