Limitations to fréchet's metric embedding method

Yair Bartal, Nathan Linial, Manor Mendel, Assaf Naor

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


Fréchet's classical isometric embedding argument has evolved to become a major tool in the study of metric spaces. An important example of a Fréchet embedding is Bourgain's embedding [4]. The authors have recently shown [2] that for every ε > 0, any n-point metric space contains a subset of size at least n1-ε which embeds into ℓ2 with distortion O(log(2/ε)/ε). The embedding used in [2] is non-Fréchet, and the purpose of this note is to show that this is not coincidental. Specifically, for every ε > 0, we construct arbitrarily large n-point metric spaces, such that the distortion of any Fréchet embedding into ℓp on subsets of size at least n 1/2+ε is Ω((log n)1/P).

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)111-124
عدد الصفحات14
دوريةIsrael Journal of Mathematics
مستوى الصوت151
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2006
منشور خارجيًانعم

ملاحظة ببليوغرافية

Funding Information:
* Supported in part by a grant from tile Israeli National Science Foundation. ** Supported in part by a grant from the Israeli National Science Foundation. t Supported in part by the Landau Center. Received July 13, 2003


أدرس بدقة موضوعات البحث “Limitations to fréchet's metric embedding method'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا