LiDAR-driven spiking neural network for collision avoidance in autonomous driving

Albert Shalumov, Raz Halaly, Elishai Ezra Tsur

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


Facilitated by advances in real-time sensing, low and high-level control, and machine learning, autonomous vehicles draw ever-increasing attention from many branches of knowledge. Neuromorphic (brain-inspired) implementation of robotic control has been shown to outperform conventional control paradigms in terms of energy efficiency, robustness to perturbations, and adaptation to varying conditions. Here we propose LiDAR-driven neuromorphic control of both vehicle's speed and steering.We evaluated and compared neuromorphic PID control and online learning for autonomous vehicle control in static and dynamic environments, finally suggesting proportional learning as a preferred control scheme. We employed biologically plausible basal-ganglia and thalamus neural models for steering and collision-avoidance, finally extending them to support a null controller and a target-reaching optimization, significantly increasing performance.

اللغة الأصليةالإنجليزيّة
رقم المقال066016
دوريةBioinspiration and Biomimetics
مستوى الصوت16
رقم الإصدار6
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - نوفمبر 2021

ملاحظة ببليوغرافية

Publisher Copyright:
© 2021 Institute of Physics Publishing. All rights reserved.


أدرس بدقة موضوعات البحث “LiDAR-driven spiking neural network for collision avoidance in autonomous driving'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا