ملخص
We present Learning to Explain (LTX), a model-agnostic framework designed for providing post-hoc explanations for vision models. The LTX framework introduces an 'explainer' model that generates explanation maps, highlighting the crucial regions that justify the predictions made by the model being explained. To train the explainer, we employ a two-stage process consisting of initial pretraining followed by per-instance finetuning. During both stages of training, we utilize a unique configuration where we compare the explained model's prediction for a masked input with its original prediction for the unmasked input. This approach enables the use of a novel counterfactual objective, which aims to anticipate the model's output using masked versions of the input image. Importantly, the LTX framework is not restricted to a specific model architecture and can provide explanations for both Transformer-based and convolutional models. Through our evaluations, we demonstrate that LTX significantly outperforms the current state-of-the-art in explainability across various metrics. Our code is available at: https://github.comLTX-CodeLTX
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings - 23rd IEEE International Conference on Data Mining, ICDM 2023 |
المحررون | Guihai Chen, Latifur Khan, Xiaofeng Gao, Meikang Qiu, Witold Pedrycz, Xindong Wu |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
الصفحات | 944-949 |
عدد الصفحات | 6 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9798350307887 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2023 |
منشور خارجيًا | نعم |
الحدث | 23rd IEEE International Conference on Data Mining, ICDM 2023 - Shanghai, الصين المدة: ١ ديسمبر ٢٠٢٣ → ٤ ديسمبر ٢٠٢٣ |
سلسلة المنشورات
الاسم | Proceedings - IEEE International Conference on Data Mining, ICDM |
---|---|
رقم المعيار الدولي للدوريات (المطبوع) | 1550-4786 |
!!Conference
!!Conference | 23rd IEEE International Conference on Data Mining, ICDM 2023 |
---|---|
الدولة/الإقليم | الصين |
المدينة | Shanghai |
المدة | ١/١٢/٢٣ → ٤/١٢/٢٣ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2023 IEEE.