Learning Distance Functions using Equivalence Relations

Aharon Bar-Hillel, Tomer Hertz, Noam Shental, Daphna Weinshall

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء


We address the problem of learning distance metrics using side-information in the form of groups of "similar" points. We propose to use the RCA algorithm, which is a simple and efficient algorithm for learning a full ranked Mahalanobis metric (Shental et al., 2002). We first show that RCA obtains the solution to an interesting optimization problem, founded on an information theoretic basis. If the Mahalanobis matrix is allowed to be singular, we show that Fisher's linear discriminant followed by RCA is the optimal dimensionality reduction algorithm under the same criterion. We then show how this optimization problem is related to the criterion optimized by another recent algorithm for metric learning (Xing et al., 2002), which uses the same kind of side information. We empirically demonstrate that learning a distance metric using the RCA algorithm significantly improves clustering performance, similarly to the alternative algorithm. Since the RCA algorithm is much more efficient and cost effective than the alternative, as it only uses closed form expressions of the data, it seems like a preferable choice for the learning of full rank Mahalanobis distances.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفProceedings, Twentieth International Conference on Machine Learning
المحررونT. Fawcett, N. Mishra
عدد الصفحات8
مستوى الصوت1
حالة النشرنُشِر - 2003
منشور خارجيًانعم
الحدثProceedings, Twentieth International Conference on Machine Learning - Washington, DC, الولايات المتّحدة
المدة: ٢١ أغسطس ٢٠٠٣٢٤ أغسطس ٢٠٠٣

سلسلة المنشورات

الاسمProceedings, Twentieth International Conference on Machine Learning
مستوى الصوت1


!!ConferenceProceedings, Twentieth International Conference on Machine Learning
الدولة/الإقليمالولايات المتّحدة
المدينةWashington, DC


أدرس بدقة موضوعات البحث “Learning Distance Functions using Equivalence Relations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا