Learn stereo, infer mono: Siamese networks for self-supervised, monocular, depth estimation

Matan Goldman, Tal Hassner, Shai Avidan

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The field of self-supervised monocular depth estimation has seen huge advancements in recent years. Most methods assume stereo data is available during training but usually under-utilize it and only treat it as a reference signal. We propose a novel self-supervised approach which uses both left and right images equally during training, but can still be used with a single input image at test time, for monocular depth estimation. Our Siamese network architecture consists of two, twin networks, each learns to predict a disparity map from a single image. At test time, however, only one of these networks is used in order to infer depth. We show state-of-the-art results on the standard KITTI Eigen split benchmark as well as being the highest scoring self-supervised method on the new KITTI single view benchmark. To demonstrate the ability of our method to generalize to new data sets, we further provide results on the Make3D benchmark, which was not used during training.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
ناشرIEEE Computer Society
الصفحات2886-2895
عدد الصفحات10
رقم المعيار الدولي للكتب (الإلكتروني)9781728125060
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - يونيو 2019
الحدث32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 - Long Beach, الولايات المتّحدة
المدة: ١٦ يونيو ٢٠١٩٢٠ يونيو ٢٠١٩

سلسلة المنشورات

الاسمIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
مستوى الصوت2019-June
رقم المعيار الدولي للدوريات (المطبوع)2160-7508
رقم المعيار الدولي للدوريات (الإلكتروني)2160-7516

!!Conference

!!Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
الدولة/الإقليمالولايات المتّحدة
المدينةLong Beach
المدة١٦/٠٦/١٩٢٠/٠٦/١٩

ملاحظة ببليوغرافية

Publisher Copyright:
© 2019 IEEE.

بصمة

أدرس بدقة موضوعات البحث “Learn stereo, infer mono: Siamese networks for self-supervised, monocular, depth estimation'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا