ملخص
The field of self-supervised monocular depth estimation has seen huge advancements in recent years. Most methods assume stereo data is available during training but usually under-utilize it and only treat it as a reference signal. We propose a novel self-supervised approach which uses both left and right images equally during training, but can still be used with a single input image at test time, for monocular depth estimation. Our Siamese network architecture consists of two, twin networks, each learns to predict a disparity map from a single image. At test time, however, only one of these networks is used in order to infer depth. We show state-of-the-art results on the standard KITTI Eigen split benchmark as well as being the highest scoring self-supervised method on the new KITTI single view benchmark. To demonstrate the ability of our method to generalize to new data sets, we further provide results on the Make3D benchmark, which was not used during training.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 |
ناشر | IEEE Computer Society |
الصفحات | 2886-2895 |
عدد الصفحات | 10 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781728125060 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - يونيو 2019 |
الحدث | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 - Long Beach, الولايات المتّحدة المدة: ١٦ يونيو ٢٠١٩ → ٢٠ يونيو ٢٠١٩ |
سلسلة المنشورات
الاسم | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
مستوى الصوت | 2019-June |
رقم المعيار الدولي للدوريات (المطبوع) | 2160-7508 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 2160-7516 |
!!Conference
!!Conference | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 |
---|---|
الدولة/الإقليم | الولايات المتّحدة |
المدينة | Long Beach |
المدة | ١٦/٠٦/١٩ → ٢٠/٠٦/١٩ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2019 IEEE.