ملخص
Many Collaborative Filtering (CF) algorithms are item-based in the sense that they analyze item-item relations in order to produce item similarities. Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as word2vec, was shown to provide state-of-the-art results on various linguistics tasks. In this paper, we show that item-based CF can be cast in the same framework of neural word embedding. Inspired by SGNS, we describe a method we name item2vec for item-based CF that produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. We present experimental results that demonstrate the effectiveness of the item2vec method and show it is competitive with SVD.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings |
المحررون | Kostas Diamantaras, Aurelio Uncini, Francesco A. N. Palmieri, Jan Larsen |
ناشر | IEEE Computer Society |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781509007462 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 8 نوفمبر 2016 |
منشور خارجيًا | نعم |
الحدث | 26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings - Vietri sul Mare, Salerno, إيطاليا المدة: ١٣ سبتمبر ٢٠١٦ → ١٦ سبتمبر ٢٠١٦ |
سلسلة المنشورات
الاسم | IEEE International Workshop on Machine Learning for Signal Processing, MLSP |
---|---|
مستوى الصوت | 2016-November |
رقم المعيار الدولي للدوريات (المطبوع) | 2161-0363 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 2161-0371 |
!!Conference
!!Conference | 26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings |
---|---|
الدولة/الإقليم | إيطاليا |
المدينة | Vietri sul Mare, Salerno |
المدة | ١٣/٠٩/١٦ → ١٦/٠٩/١٦ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2016 IEEE.