Is Probing All You Need? Indicator Tasks as an Alternative to Probing Embedding Spaces

Tal Levy, Omer Goldman, Reut Tsarfaty

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The ability to identify and control different kinds of linguistic information encoded in vector representations of words has many use cases, especially for explainability and bias removal. This is usually done via a set of simple classification tasks, termed probes, to evaluate the information encoded in the embedding space. However, the involvement of a trainable classifier leads to entanglement between the probe's results and the classifier's nature. As a result, contemporary works on probing include tasks that do not involve training of auxiliary models. In this work we introduce the term indicator tasks for non-trainable tasks which are used to query embedding spaces for the existence of certain properties, and claim that this kind of tasks may point to a direction opposite to probes, and that this contradiction complicates the decision on whether a property exists in an embedding space. We demonstrate our claims with two test cases, one dealing with gender debiasing and another with the erasure of morphological information from embedding spaces. We show that the application of a suitable indicator provides a more accurate picture of the information captured and removed compared to probes. We thus conclude that indicator tasks should be implemented and taken into consideration when eliciting information from embedded representations.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفFindings of the Association for Computational Linguistics
العنوان الفرعي لمنشور المضيفEMNLP 2023
ناشرAssociation for Computational Linguistics (ACL)
الصفحات5243-5254
عدد الصفحات12
رقم المعيار الدولي للكتب (الإلكتروني)9798891760615
حالة النشرنُشِر - 2023
منشور خارجيًانعم
الحدث2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, سنغافورة
المدة: ٦ ديسمبر ٢٠٢٣١٠ ديسمبر ٢٠٢٣

سلسلة المنشورات

الاسمFindings of the Association for Computational Linguistics: EMNLP 2023

!!Conference

!!Conference2023 Findings of the Association for Computational Linguistics: EMNLP 2023
الدولة/الإقليمسنغافورة
المدينةSingapore
المدة٦/١٢/٢٣١٠/١٢/٢٣

ملاحظة ببليوغرافية

Publisher Copyright:
© 2023 Association for Computational Linguistics.

بصمة

أدرس بدقة موضوعات البحث “Is Probing All You Need? Indicator Tasks as an Alternative to Probing Embedding Spaces'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا