InverSynth: Deep Estimation of Synthesizer Parameter Configurations from Audio Signals

Oren Barkan, David Tsiris, Ori Katz, Noam Koenigstein

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


Sound synthesis is a complex field that requires domain expertise. Manual tuning of synthesizer parameters to match a specific sound can be an exhaustive task, even for experienced sound engineers. In this paper, we introduce InverSynth-an automatic method for synthesizer parameters tuning to match a given input sound. InverSynth is based on strided convolutional neural networks and is capable of inferring the synthesizer parameters configuration from the input spectrogram and even from the raw audio. The effectiveness InverSynth is demonstrated on a subtractive synthesizer with four frequency modulated oscillators, envelope generator and a gater effect. We present extensive quantitative and qualitative results that showcase the superiority InverSynth over several baselines. Furthermore, we show that the network depth is an important factor that contributes to the prediction accuracy.

اللغة الأصليةالإنجليزيّة
رقم المقال8854832
الصفحات (من إلى)2385-2396
عدد الصفحات12
دوريةIEEE/ACM Transactions on Audio Speech and Language Processing
مستوى الصوت27
رقم الإصدار12
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - ديسمبر 2019
منشور خارجيًانعم

ملاحظة ببليوغرافية

Publisher Copyright:
© 2014 IEEE.


أدرس بدقة موضوعات البحث “InverSynth: Deep Estimation of Synthesizer Parameter Configurations from Audio Signals'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا