Interpreting BERT-based Text Similarity via Activation and Saliency Maps

Itzik Malkiel, Dvir Ginzburg, Oren Barkan, Avi Caciularu, Jonathan Weill, Noam Koenigstein

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Recently, there has been growing interest in the ability of Transformer-based models to produce meaningful embeddings of text with several applications, such as text similarity. Despite significant progress in the field, the explanations for similarity predictions remain challenging, especially in unsupervised settings. In this work, we present an unsupervised technique for explaining paragraph similarities inferred by pre-trained BERT models. By looking at a pair of paragraphs, our technique identifies important words that dictate each paragraph's semantics, matches between the words in both paragraphs, and retrieves the most important pairs that explain the similarity between the two. The method, which has been assessed by extensive human evaluations and demonstrated on datasets comprising long and complex paragraphs, has shown great promise, providing accurate interpretations that correlate better with human perceptions.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفWWW 2022 - Proceedings of the ACM Web Conference 2022
ناشرAssociation for Computing Machinery, Inc
الصفحات3259-3268
عدد الصفحات10
رقم المعيار الدولي للكتب (الإلكتروني)9781450390965
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 25 أبريل 2022
الحدث31st ACM World Wide Web Conference, WWW 2022 - Virtual, Online, فرنسا
المدة: ٢٥ أبريل ٢٠٢٢٢٩ أبريل ٢٠٢٢

سلسلة المنشورات

الاسمWWW 2022 - Proceedings of the ACM Web Conference 2022

!!Conference

!!Conference31st ACM World Wide Web Conference, WWW 2022
الدولة/الإقليمفرنسا
المدينةVirtual, Online
المدة٢٥/٠٤/٢٢٢٩/٠٤/٢٢

ملاحظة ببليوغرافية

Funding Information:
The work is supported by the NSFC for Distinguished Young Scholar (61825602) and Tsinghua-Bosch Joint ML Center.

Publisher Copyright:
© 2022 ACM.

بصمة

أدرس بدقة موضوعات البحث “Interpreting BERT-based Text Similarity via Activation and Saliency Maps'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا