ملخص
Recently, there has been growing interest in the ability of Transformer-based models to produce meaningful embeddings of text with several applications, such as text similarity. Despite significant progress in the field, the explanations for similarity predictions remain challenging, especially in unsupervised settings. In this work, we present an unsupervised technique for explaining paragraph similarities inferred by pre-trained BERT models. By looking at a pair of paragraphs, our technique identifies important words that dictate each paragraph's semantics, matches between the words in both paragraphs, and retrieves the most important pairs that explain the similarity between the two. The method, which has been assessed by extensive human evaluations and demonstrated on datasets comprising long and complex paragraphs, has shown great promise, providing accurate interpretations that correlate better with human perceptions.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | WWW 2022 - Proceedings of the ACM Web Conference 2022 |
ناشر | Association for Computing Machinery, Inc |
الصفحات | 3259-3268 |
عدد الصفحات | 10 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781450390965 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 25 أبريل 2022 |
الحدث | 31st ACM World Wide Web Conference, WWW 2022 - Virtual, Online, فرنسا المدة: ٢٥ أبريل ٢٠٢٢ → ٢٩ أبريل ٢٠٢٢ |
سلسلة المنشورات
الاسم | WWW 2022 - Proceedings of the ACM Web Conference 2022 |
---|
!!Conference
!!Conference | 31st ACM World Wide Web Conference, WWW 2022 |
---|---|
الدولة/الإقليم | فرنسا |
المدينة | Virtual, Online |
المدة | ٢٥/٠٤/٢٢ → ٢٩/٠٤/٢٢ |
ملاحظة ببليوغرافية
Funding Information:The work is supported by the NSFC for Distinguished Young Scholar (61825602) and Tsinghua-Bosch Joint ML Center.
Publisher Copyright:
© 2022 ACM.