In search of the role’s footprints in client-therapist dialogues

Anat Lerner, Vered Silber-Varod, Fernando Batista, Helena Moniz

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء


The goal of this research is to identify speaker’s role via machine learning of broad acoustic parameters, in order to understand how an occupation, or a role, affects voice characteristics. The examined corpus consists of recordings taken under the same psychological paradigm (Process Work). Four interns were involved in four genuine client-therapist treatment sessions, where each individual had to train her therapeutic skills on her colleague that, in her turn, participated as a client. This uniform setting provided a unique opportunity to examine how role affects speaker’s prosody. By a collection of machine learning algorithms, we tested automatic classification of the role across sessions. Results based on the acoustic properties show high classification rates, suggesting that there are discriminative acoustic features of speaker’s role, as either a therapist or a client.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)400-404
عدد الصفحات5
دوريةProceedings of the International Conference on Speech Prosody
مستوى الصوت2016-January
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2016
الحدث8th Speech Prosody 2016 - Boston, الولايات المتّحدة
المدة: ٣١ مايو ٢٠١٦٣ يونيو ٢٠١٦

ملاحظة ببليوغرافية

Publisher Copyright:
© 2016, International Speech Communications Association. All rights reserved.


أدرس بدقة موضوعات البحث “In search of the role’s footprints in client-therapist dialogues'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا