TY - JOUR
T1 - Generic freeness of modules over non-commutative domains
AU - Paran, Elad
AU - Vo, Thieu N.
N1 - Publisher Copyright:
© 2023 Elsevier Inc.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - We generalize Grothendieck's generic freeness lemma to modules over semi-constructible extensions of normally bounded domains, extending previous results of Irving, McConnell, Robson, Artin, Small and Zhang, in which the base ring is commutative.
AB - We generalize Grothendieck's generic freeness lemma to modules over semi-constructible extensions of normally bounded domains, extending previous results of Irving, McConnell, Robson, Artin, Small and Zhang, in which the base ring is commutative.
KW - Constructible extensions
KW - Generic freeness
KW - Non-commutative polynomial rings
KW - Non-commutative ring theory
KW - Normalizing extensions
UR - http://www.scopus.com/inward/record.url?scp=85185927623&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2023.11.033
DO - 10.1016/j.jalgebra.2023.11.033
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85185927623
SN - 0021-8693
VL - 641
SP - 735
EP - 753
JO - Journal of Algebra
JF - Journal of Algebra
ER -