ملخص
We analyze new generalization bounds for deep learning models trained by transfer learning from a source to a target task. Our bounds utilize a quantity called the majority predictor accuracy, which can be computed efficiently from data. We show that our theory is useful in practice since it implies that the majority predictor accuracy can be used as a transferability measure, a fact that is also validated by our experiments.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings of 2022 International Symposium on Information Theory and Its Applications, ISITA 2022 |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
الصفحات | 139-143 |
عدد الصفحات | 5 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9784885523410 |
حالة النشر | نُشِر - 2022 |
منشور خارجيًا | نعم |
الحدث | 17th International Symposium on Information Theory and Its Applications, ISITA 2022 - Tsukuba, Ibaraki, اليابان المدة: ١٧ أكتوبر ٢٠٢٢ → ١٩ أكتوبر ٢٠٢٢ |
سلسلة المنشورات
الاسم | Proceedings of 2022 International Symposium on Information Theory and Its Applications, ISITA 2022 |
---|
!!Conference
!!Conference | 17th International Symposium on Information Theory and Its Applications, ISITA 2022 |
---|---|
الدولة/الإقليم | اليابان |
المدينة | Tsukuba, Ibaraki |
المدة | ١٧/١٠/٢٢ → ١٩/١٠/٢٢ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2022 IEICE.