Gaussian process regression for out-of-sample extension

Oren Barkan, Jonathan Weill, Amir Averbuch

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Manifold learning methods are useful for high dimensional data analysis. Many of the existing methods produce a low dimensional representation that attempts to describe the intrinsic geometric structure of the original data. Typically, this process is computationally expensive and the produced embedding is limited to the training data. In many real life scenarios, the ability to produce embedding of unseen samples is essential. In this paper we propose a Bayesian non-parametric approach for out-of-sample extension. The method is based on Gaussian Process Regression and independent of the manifold learning algorithm. Additionally, the method naturally provides a measure for the degree of abnormality for a newly arrived data point that did not participate in the training process. We derive the mathematical connection between the proposed method and the Nystrom extension and show that the latter is a special case of the former. We present extensive experimental results that demonstrate the performance of the proposed method and compare it to other existing out-of-sample extension methods.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
المحررونKostas Diamantaras, Aurelio Uncini, Francesco A. N. Palmieri, Jan Larsen
ناشرIEEE Computer Society
رقم المعيار الدولي للكتب (الإلكتروني)9781509007462
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 8 نوفمبر 2016
منشور خارجيًانعم
الحدث26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings - Vietri sul Mare, Salerno, إيطاليا
المدة: ١٣ سبتمبر ٢٠١٦١٦ سبتمبر ٢٠١٦

سلسلة المنشورات

الاسمIEEE International Workshop on Machine Learning for Signal Processing, MLSP
مستوى الصوت2016-November
رقم المعيار الدولي للدوريات (المطبوع)2161-0363
رقم المعيار الدولي للدوريات (الإلكتروني)2161-0371

!!Conference

!!Conference26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
الدولة/الإقليمإيطاليا
المدينةVietri sul Mare, Salerno
المدة١٣/٠٩/١٦١٦/٠٩/١٦

ملاحظة ببليوغرافية

Publisher Copyright:
© 2016 IEEE.

بصمة

أدرس بدقة موضوعات البحث “Gaussian process regression for out-of-sample extension'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا