Galois theory over complete local domains

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Complete local domains play an important role in commutative algebra and algebraic geometry, and their algebraic properties were already described by Cohen's structure theorem in 1946. However, the Galois theoretic properties of their quotient fields only recently began to unfold. In 2005 Harbater and Stevenson considered the two dimensional case. They proved that the absolute Galois group of the field K((X, Y)) (where K is an arbitrary field) is semi-free. In this work we settle the general case, and prove that if R is a complete local domain of dimension exceeding 1, then the quotient field of R has a semi-free absolute Galois group.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)395-413
عدد الصفحات19
دوريةMathematische Annalen
مستوى الصوت348
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2010
منشور خارجيًانعم

ملاحظة ببليوغرافية

Funding Information:
Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation, and by the GTEM network.

بصمة

أدرس بدقة موضوعات البحث “Galois theory over complete local domains'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا