ملخص
We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. To this end, we describe a number of technical contributions. We derive a novel recurrent neural network (RNN)-based approach for face reenactment which adjusts for both pose and expression variations and can be applied to a single image or a video sequence. For video sequences, we introduce continuous interpolation of the face views based on reenactment, Delaunay Triangulation, and barycentric coordinates. Occluded face regions are handled by a face completion network. Finally, we use a face blending network for seamless blending of the two faces while preserving target skin color and lighting conditions. This network uses a novel Poisson blending loss which combines Poisson optimization with perceptual loss. We compare our approach to existing state-of-the-art systems and show our results to be both qualitatively and quantitatively superior.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings - 2019 International Conference on Computer Vision, ICCV 2019 |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
الصفحات | 7183-7192 |
عدد الصفحات | 10 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781728148038 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - أكتوبر 2019 |
الحدث | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, كوريا الجنوبيّة المدة: ٢٧ أكتوبر ٢٠١٩ → ٢ نوفمبر ٢٠١٩ |
سلسلة المنشورات
الاسم | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
مستوى الصوت | 2019-October |
رقم المعيار الدولي للدوريات (المطبوع) | 1550-5499 |
!!Conference
!!Conference | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 |
---|---|
الدولة/الإقليم | كوريا الجنوبيّة |
المدينة | Seoul |
المدة | ٢٧/١٠/١٩ → ٢/١١/١٩ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2019 IEEE.