From weighted to unweighted model counting

Supratik Chakraborty, Dror Fried, Kuldeep S. Meel, Moshe Y. Vardi

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The recent surge of interest in reasoning about probabilistic graphical models has led to the development of various techniques for probabilistic reasoning. Of these, techniques based on weighted model counting are particularly interesting since they can potentially leverage recent advances in unweighted model counting and in propositional satisfiability solving. In this paper, we present a new approach to weighted model counting via reduction to unweighted model counting. Our reduction, which is polynomial-time and preserves the normal form (CNF/DNF) of the input formula, allows us to exploit advances in unweighted model counting to solve weighted model counting instances. Experiments with weighted model counters built using our reduction indicate that these counters performs much better than a state-of-the-art weighted model counter.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفIJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
المحررونMichael Wooldridge, Qiang Yang
ناشرInternational Joint Conferences on Artificial Intelligence
الصفحات689-695
عدد الصفحات7
رقم المعيار الدولي للكتب (الإلكتروني)9781577357384
حالة النشرنُشِر - 2015
منشور خارجيًانعم
الحدث24th International Joint Conference on Artificial Intelligence, IJCAI 2015 - Buenos Aires, الأرجنتين
المدة: ٢٥ يوليو ٢٠١٥٣١ يوليو ٢٠١٥

سلسلة المنشورات

الاسمIJCAI International Joint Conference on Artificial Intelligence
مستوى الصوت2015-January
رقم المعيار الدولي للدوريات (المطبوع)1045-0823

!!Conference

!!Conference24th International Joint Conference on Artificial Intelligence, IJCAI 2015
الدولة/الإقليمالأرجنتين
المدينةBuenos Aires
المدة٢٥/٠٧/١٥٣١/٠٧/١٥

بصمة

أدرس بدقة موضوعات البحث “From weighted to unweighted model counting'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا