ملخص
Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MinilmageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
ناشر | IEEE Computer Society |
الصفحات | 9079-9088 |
عدد الصفحات | 10 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781665469463 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2022 |
منشور خارجيًا | نعم |
الحدث | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, الولايات المتّحدة المدة: ١٩ يونيو ٢٠٢٢ → ٢٤ يونيو ٢٠٢٢ |
سلسلة المنشورات
الاسم | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
مستوى الصوت | 2022-June |
رقم المعيار الدولي للدوريات (المطبوع) | 1063-6919 |
!!Conference
!!Conference | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
---|---|
الدولة/الإقليم | الولايات المتّحدة |
المدينة | New Orleans |
المدة | ١٩/٠٦/٢٢ → ٢٤/٠٦/٢٢ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2022 IEEE.