Fairness-Driven Private Collaborative Machine Learning

Dana Pessach, Tamir Tassa, Erez Shmueli

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


The performance of machine learning algorithms can be considerably improved when trained over larger datasets. In many domains, such as medicine and finance, larger datasets can be obtained if several parties, each having access to limited amounts of data, collaborate and share their data. However, such data sharing introduces significant privacy challenges. While multiple recent studies have investigated methods for private collaborative machine learning, the fairness of such collaborative algorithms has been overlooked. In this work, we suggest a feasible privacy-preserving pre-process mechanism for enhancing fairness of collaborative machine learning algorithms. An extensive evaluation of the proposed method shows that it is able to enhance fairness considerably with only a minor compromise in accuracy.

اللغة الأصليةالإنجليزيّة
رقم المقال27
الصفحات (من إلى)1-30
عدد الصفحات30
دوريةACM Transactions on Intelligent Systems and Technology
مستوى الصوت15
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 22 فبراير 2024

ملاحظة ببليوغرافية

Publisher Copyright:
© 2024 Copyright held by the owner/author(s).


أدرس بدقة موضوعات البحث “Fairness-Driven Private Collaborative Machine Learning'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا