FacePoseNet: Making a Case for Landmark-Free Face Alignment

Feng Ju Chang, Anh Tuan Tran, Tal Hassner, Iacopo Masi, Ram Nevatia, Gerard Medioni

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

We show how a simple convolutional neural network (CNN) can be trained to accurately and robustly regress 6 degrees of freedom (6DoF) 3D head pose, directly from image intensities. We further explain how this FacePoseNet (FPN) can be used to align faces in 2D and 3D as an alternative to explicit facial landmark detection for these tasks. We claim that in many cases the standard means of measuring landmark detector accuracy can be misleading when comparing different face alignments. Instead, we compare our FPN with existing methods by evaluating how they affect face recognition accuracy on the IJB-A and IJB-B benchmarks: using the same recognition pipeline, but varying the face alignment method. Our results show that (a) better landmark detection accuracy measured on the 300W benchmark does not necessarily imply better face recognition accuracy. (b) Our FPN provides superior 2D and 3D face alignment on both benchmarks. Finally, (c), FPN aligns faces at a small fraction of the computational cost of comparably accurate landmark detectors. For many purposes, FPN is thus a far faster and far more accurate face alignment method than using facial landmark detectors.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
ناشرInstitute of Electrical and Electronics Engineers Inc.
الصفحات1599-1608
عدد الصفحات10
رقم المعيار الدولي للكتب (الإلكتروني)9781538610343
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يوليو 2017
الحدث16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, إيطاليا
المدة: ٢٢ أكتوبر ٢٠١٧٢٩ أكتوبر ٢٠١٧

سلسلة المنشورات

الاسمProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
مستوى الصوت2018-January

!!Conference

!!Conference16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
الدولة/الإقليمإيطاليا
المدينةVenice
المدة٢٢/١٠/١٧٢٩/١٠/١٧

ملاحظة ببليوغرافية

Publisher Copyright:
© 2017 IEEE.

بصمة

أدرس بدقة موضوعات البحث “FacePoseNet: Making a Case for Landmark-Free Face Alignment'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا