ملخص
We introduce our method and system for face recognition using multiple pose-aware deep learning models. In our representation, a face image is processed by several pose-specific deep convolutional neural network (CNN) models to generate multiple pose-specific features. 3D rendering is used to generate multiple face poses from the input image. Sensitivity of the recognition system to pose variations is reduced since we use an ensemble of pose-specific CNN features. The paper presents extensive experimental results on the effect of landmark detection, CNN layer selection and pose model selection on the performance of the recognition pipeline. Our novel representation achieves better results than the state-of-the-art on IARPA's CS2 and NIST's IJB-A in both verification and identification (i.e. search) tasks.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016 |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
الصفحات | 1 |
عدد الصفحات | 9 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781509006410 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - مارس 2016 |
الحدث | IEEE Winter Conference on Applications of Computer Vision, WACV 2016 - Lake Placid, الولايات المتّحدة المدة: ٧ مارس ٢٠١٦ → ١٠ مارس ٢٠١٦ |
سلسلة المنشورات
الاسم | 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016 |
---|
!!Conference
!!Conference | IEEE Winter Conference on Applications of Computer Vision, WACV 2016 |
---|---|
الدولة/الإقليم | الولايات المتّحدة |
المدينة | Lake Placid |
المدة | ٧/٠٣/١٦ → ١٠/٠٣/١٦ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2016 IEEE.