ملخص
A central conjecture in inverse Galois theory, proposed by Dèbes and Deschamps, asserts that every finite split embedding problem over an arbitrary field can be regularly solved. We give an unconditional proof of a consequence of this conjecture, namely that such embedding problems can be regularly solved if one waives the requirement that the solution fields are normal. This extends previous results of M. Fried, Takahashi, Deschamps and the last two authors concerning the realization of finite groups as automorphism groups of field extensions.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 732-744 |
عدد الصفحات | 13 |
دورية | Bulletin of the London Mathematical Society |
مستوى الصوت | 51 |
رقم الإصدار | 4 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 1 أغسطس 2019 |
ملاحظة ببليوغرافية
Publisher Copyright:© 2019 London Mathematical Society