Efficient anonymizations with enhanced utility

Jacob Goldberger, Tamir Tassa

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The k-anonymization method is a commonly used privacy-preserving technique. Previous studies used various measures of utility that aim at enhancing the correlation between the original public data and the generalized public data. We, bearing in mind that a primary goal in releasing the anonymized database for data mining is to deduce methods of predicting the private data from the public data, propose a new information-theoretic measure that aims at enhancing the correlation between the generalized public data and the private data. Such a measure significantly enhances the utility of the released anonymized database for data mining. We then proceed to describe a new and highly efficient algorithm that is designed to achieve k-anonymity with high utility. That algorithm is based on a modified version of sequential clustering which is the method of choice in clustering, and it is independent of the underlying measure of utility.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفICDM Workshops 2009 - IEEE International Conference on Data Mining
الصفحات106-113
عدد الصفحات8
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2009
الحدث2009 IEEE International Conference on Data Mining Workshops, ICDMW 2009 - Miami, FL, الولايات المتّحدة
المدة: ٦ ديسمبر ٢٠٠٩٦ ديسمبر ٢٠٠٩

سلسلة المنشورات

الاسمICDM Workshops 2009 - IEEE International Conference on Data Mining

!!Conference

!!Conference2009 IEEE International Conference on Data Mining Workshops, ICDMW 2009
الدولة/الإقليمالولايات المتّحدة
المدينةMiami, FL
المدة٦/١٢/٠٩٦/١٢/٠٩

بصمة

أدرس بدقة موضوعات البحث “Efficient anonymizations with enhanced utility'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا