Diffusion maps for PLDA-based speaker verification

Oren Barkan, Hagai Aronowitz

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

During the last few years, i-vectors have become an important component in most state-of-the-art speaker recognition systems. Ivector extraction is based on an assumption that GMM supervectors reside on a low dimensional space, which is modeled using Factor Analysis. In this paper we replace the above assumption with an assumption that the GMM supervectors reside on a low dimensional manifold and propose to use Diffusion Maps to learn that manifold. The learnt manifold implies a mapping of spoken sessions into a modified i-vector space which we call d-vector space. D-vectors can further be processed using standard techniques such as LDA, WCCN, cosine distance scoring or Probabilistic Linear Discriminant Analysis (PLDA). We demonstrate the usefulness of our approach on the telephone core conditions of NIST 2010, and obtain significant error reduction.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013 - Proceedings
الصفحات7639-7643
عدد الصفحات5
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 18 أكتوبر 2013
منشور خارجيًانعم
الحدث2013 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013 - Vancouver, BC, كندا
المدة: ٢٦ مايو ٢٠١٣٣١ مايو ٢٠١٣

سلسلة المنشورات

الاسمICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
رقم المعيار الدولي للدوريات (المطبوع)1520-6149

!!Conference

!!Conference2013 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013
الدولة/الإقليمكندا
المدينةVancouver, BC
المدة٢٦/٠٥/١٣٣١/٠٥/١٣

بصمة

أدرس بدقة موضوعات البحث “Diffusion maps for PLDA-based speaker verification'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا