ملخص
Obtaining linguistic annotation from novice crowdworkers is far from trivial. A case in point is the annotation of discourse relations, which is a complicated task. Recent methods have obtained promising results by extracting relation labels from either discourse connectives (DCs) or question-answer (QA) pairs that participants provide. The current contribution studies the effect of worker selection and training on the agreement on implicit relation labels between workers and gold labels, for both the DC and the QA method. In Study 1, workers were not specifically selected or trained, and the results show that there is much room for improvement. Study 2 shows that a combination of selection and training does lead to improved results, but the method is cost- and time-intensive. Study 3 shows that a selection-only approach is a viable alternative; it results in annotations of comparable quality compared to annotations from trained participants. The results generalized over both the DC and QA method and therefore indicate that a selection-only approach could also be effective for other crowdsourced discourse annotation tasks.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 2022 Language Resources and Evaluation Conference, LREC 2022 |
المحررون | Nicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Jan Odijk, Stelios Piperidis |
ناشر | European Language Resources Association (ELRA) |
الصفحات | 2148-2156 |
عدد الصفحات | 9 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9791095546726 |
حالة النشر | نُشِر - 2022 |
منشور خارجيًا | نعم |
الحدث | 13th International Conference on Language Resources and Evaluation Conference, LREC 2022 - Marseille, فرنسا المدة: ٢٠ يونيو ٢٠٢٢ → ٢٥ يونيو ٢٠٢٢ |
سلسلة المنشورات
الاسم | 2022 Language Resources and Evaluation Conference, LREC 2022 |
---|
!!Conference
!!Conference | 13th International Conference on Language Resources and Evaluation Conference, LREC 2022 |
---|---|
الدولة/الإقليم | فرنسا |
المدينة | Marseille |
المدة | ٢٠/٠٦/٢٢ → ٢٥/٠٦/٢٢ |
ملاحظة ببليوغرافية
Publisher Copyright:© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0.