ملخص
Opinionated natural language generation (ONLG) is a new, challenging, NLG task in which we aim to automatically generate human-like, subjective, responses to opinionated articles online. We present a data-driven architecture for ONLG that generates subjective responses triggered by users' agendas, based on automatically acquired wide-coverage generative grammars. We compare three types of grammatical representations that we design for ONLG. The grammars interleave different layers of linguistic information, and are induced from a new, enriched dataset we developed. Our evaluation shows that generation with Relational-Realizational (Tsarfaty and Sima'an, 2008) inspired grammar gets better language model scores than lexicalized grammars à la Collins (2003), and that the latter gets better human-evaluation scores. We also show that conditioning the generation on topic models makes generated responses more relevant to the document content.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers) |
ناشر | Association for Computational Linguistics (ACL) |
الصفحات | 1331-1341 |
عدد الصفحات | 11 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781945626753 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2017 |
الحدث | 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 - Vancouver, كندا المدة: ٣٠ يوليو ٢٠١٧ → ٤ أغسطس ٢٠١٧ |
سلسلة المنشورات
الاسم | ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers) |
---|---|
مستوى الصوت | 1 |
!!Conference
!!Conference | 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 |
---|---|
الدولة/الإقليم | كندا |
المدينة | Vancouver |
المدة | ٣٠/٠٧/١٧ → ٤/٠٨/١٧ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2017 Association for Computational Linguistics.