Data-Aided Signal-to-Noise-Ratio estimation in time selective fading channels

Ami Wiesel, Jason Goldberg, Hagit Messer

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء

ملخص

Data-Aided Signal-to-Noise-Ratio (SNR) estimation is considered for time selective fading channels whose time variation is described by a polynomial time model. The inherent estimation accuracy limitations associated with the problem are quantified via a Cramer-Rao Bound analysis. A maximum likelihood type class of estimators is proposed and its exact, non-asymptotic performance is computed. The standard, constant channel SNR estimator performance is determined in the presence of channel polynomial order mismatch. Simulations results are presented which verify the effectiveness of the technique as well as its performance advantage over previously proposed methods.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)III/2197-III/2200
دوريةProceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
مستوى الصوت3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2002
منشور خارجيًانعم
الحدث2002 IEEE International Conference on Acoustic, Speech, and Signal Processing - Orlando, FL, الولايات المتّحدة
المدة: ١٣ مايو ٢٠٠٢١٧ مايو ٢٠٠٢

بصمة

أدرس بدقة موضوعات البحث “Data-Aided Signal-to-Noise-Ratio estimation in time selective fading channels'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا