Covering Uncommon Ground: Gap-Focused Question Generation for Answer Assessment

Roni Rabin, Alexandre Djerbetian, Roee Engelberg, Lidan Hackmon, Gal Elidan, Reut Tsarfaty, Amir Globerson

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Human communication often involves information gaps between the interlocutors. For example, in an educational dialogue, a student often provides an answer that is incomplete, and there is a gap between this answer and the perfect one expected by the teacher. Successful dialogue then hinges on the teacher asking about this gap in an effective manner, thus creating a rich and interactive educational experience. We focus on the problem of generating such gap-focused questions (GFQs) automatically. We define the task, highlight key desired aspects of a good GFQ, and propose a model that satisfies these. Finally, we provide an evaluation by human annotators of our generated questions compared against human generated ones, demonstrating competitive performance.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفShort Papers
ناشرAssociation for Computational Linguistics (ACL)
الصفحات215-227
عدد الصفحات13
رقم المعيار الدولي للكتب (الإلكتروني)9781959429715
حالة النشرنُشِر - 2023
منشور خارجيًانعم
الحدث61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, كندا
المدة: ٩ يوليو ٢٠٢٣١٤ يوليو ٢٠٢٣

سلسلة المنشورات

الاسمProceedings of the Annual Meeting of the Association for Computational Linguistics
مستوى الصوت2
رقم المعيار الدولي للدوريات (المطبوع)0736-587X

!!Conference

!!Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
الدولة/الإقليمكندا
المدينةToronto
المدة٩/٠٧/٢٣١٤/٠٧/٢٣

ملاحظة ببليوغرافية

Publisher Copyright:
© 2023 Association for Computational Linguistics.

بصمة

أدرس بدقة موضوعات البحث “Covering Uncommon Ground: Gap-Focused Question Generation for Answer Assessment'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا