ملخص
Human communication often involves information gaps between the interlocutors. For example, in an educational dialogue, a student often provides an answer that is incomplete, and there is a gap between this answer and the perfect one expected by the teacher. Successful dialogue then hinges on the teacher asking about this gap in an effective manner, thus creating a rich and interactive educational experience. We focus on the problem of generating such gap-focused questions (GFQs) automatically. We define the task, highlight key desired aspects of a good GFQ, and propose a model that satisfies these. Finally, we provide an evaluation by human annotators of our generated questions compared against human generated ones, demonstrating competitive performance.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Short Papers |
ناشر | Association for Computational Linguistics (ACL) |
الصفحات | 215-227 |
عدد الصفحات | 13 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781959429715 |
حالة النشر | نُشِر - 2023 |
منشور خارجيًا | نعم |
الحدث | 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, كندا المدة: ٩ يوليو ٢٠٢٣ → ١٤ يوليو ٢٠٢٣ |
سلسلة المنشورات
الاسم | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
مستوى الصوت | 2 |
رقم المعيار الدولي للدوريات (المطبوع) | 0736-587X |
!!Conference
!!Conference | 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 |
---|---|
الدولة/الإقليم | كندا |
المدينة | Toronto |
المدة | ٩/٠٧/٢٣ → ١٤/٠٧/٢٣ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2023 Association for Computational Linguistics.