Constrained submodular maximization via a nonsymmetric technique

Niv Buchbinder, Moran Feldman

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


The study of combinatorial optimization problems with submodular objectives has attracted much attention in recent years. Such problems are important in both theory and practice because their objective functions are very general. Obtaining further improvements for many submodular maximization problems boils down to finding better algorithms for optimizing a relaxation of them known as the multilinear extension. In this work, we present an algorithm for optimizing the multilinear relaxation whose guarantee improves over the guarantee of the best previous algorithm (by Ene and Nguyen). Moreover, our algorithm is based on a new technique that is, arguably, simpler and more natural for the problem at hand. In a nutshell, previous algorithms for this problem rely on symmetry properties that are natural only in the absence of a constraint. Our technique avoids the need to resort to such properties, and thus seems to be a better fit for constrained problems.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)988-1005
عدد الصفحات18
دوريةMathematics of Operations Research
مستوى الصوت44
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2019

ملاحظة ببليوغرافية

Publisher Copyright:
© 2019 INFORMS


أدرس بدقة موضوعات البحث “Constrained submodular maximization via a nonsymmetric technique'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا