ملخص
Consider a set of voters V, represented by a multiset in a metric space (X,d). The voters have to reach a decision - a point in X. A choice p ? X is called a ß-plurality point for V, if for any other choice q ? X it holds that |{v ? V | ß · d(p,v) = d(q,v)}| = |V2|. In other words, at least half of the voters “prefer” p over q, when an extra factor of ß is taken in favor of p. For ß = 1, this is equivalent to Condorcet winner, which rarely exists. The concept of ß-plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [SoCG 2020] as a relaxation of the Condorcet criterion. Denote by ß(*X,d) the value sup{ß | every finite multiset V in X admits a ß-plurality point}. The parameter ß* determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane ß(*R2,k·k2) = v23, and more generally, for ddimensional Euclidean space, v1d = ß(*Rd,k·k2) = v23. In this paper, we show that 0.557 = ß(*Rd,k·k2) for any dimension d (notice that v1d < 0.557 for any d = 4). In addition, we prove that for every metric space (X,d) it holds that v2 - 1 = ß(*X,d), and show that there exists a metric space for which ß(*X,d) = 12
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
ناشر | Association for the Advancement of Artificial Intelligence |
الفصل | Technical Tracks |
الصفحات | 5407-5414 |
عدد الصفحات | 8 |
مستوى الصوت | 35 |
رقم المعيار الدولي للكتب (الإلكتروني) | 978-171383597-4 |
رقم المعيار الدولي للكتب (المطبوع) | 2159-5399 |
حالة النشر | نُشِر - 2021 |
منشور خارجيًا | نعم |
الحدث | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online المدة: ٢ فبراير ٢٠٢١ → ٩ فبراير ٢٠٢١ |
سلسلة المنشورات
الاسم | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
مستوى الصوت | 6B |
!!Conference
!!Conference | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
المدينة | Virtual, Online |
المدة | ٢/٠٢/٢١ → ٩/٠٢/٢١ |
ملاحظة ببليوغرافية
Funding Information:Funding. Work by Arnold Filtser was supported by the Si-mons Foundation. Work by Omrit Filtser was supported by the Eric and Wendy Schmidt Fund for Strategic Innovation, by the Council for Higher Education of Israel, and by Ben-Gurion University of the Negev.
Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.