Condorcet Relaxation In Spatial Voting

Arnold Filtser, Omrit Filtser

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Consider a set of voters V, represented by a multiset in a metric space (X,d). The voters have to reach a decision - a point in X. A choice p ? X is called a ß-plurality point for V, if for any other choice q ? X it holds that |{v ? V | ß · d(p,v) = d(q,v)}| = |V2|. In other words, at least half of the voters “prefer” p over q, when an extra factor of ß is taken in favor of p. For ß = 1, this is equivalent to Condorcet winner, which rarely exists. The concept of ß-plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [SoCG 2020] as a relaxation of the Condorcet criterion. Denote by ß(*X,d) the value sup{ß | every finite multiset V in X admits a ß-plurality point}. The parameter ß* determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane ß(*R2,k·k2) = v23, and more generally, for ddimensional Euclidean space, v1d = ß(*Rd,k·k2) = v23. In this paper, we show that 0.557 = ß(*Rd,k·k2) for any dimension d (notice that v1d < 0.557 for any d = 4). In addition, we prove that for every metric space (X,d) it holds that v2 - 1 = ß(*X,d), and show that there exists a metric space for which ß(*X,d) = 12

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف35th AAAI Conference on Artificial Intelligence, AAAI 2021
ناشرAssociation for the Advancement of Artificial Intelligence
الفصلTechnical Tracks
الصفحات5407-5414
عدد الصفحات8
مستوى الصوت35
رقم المعيار الدولي للكتب (الإلكتروني)978-171383597-4
رقم المعيار الدولي للكتب (المطبوع)2159-5399
حالة النشرنُشِر - 2021
منشور خارجيًانعم
الحدث35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
المدة: ٢ فبراير ٢٠٢١٩ فبراير ٢٠٢١

سلسلة المنشورات

الاسم35th AAAI Conference on Artificial Intelligence, AAAI 2021
مستوى الصوت6B

!!Conference

!!Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
المدينةVirtual, Online
المدة٢/٠٢/٢١٩/٠٢/٢١

ملاحظة ببليوغرافية

Funding Information:
Funding. Work by Arnold Filtser was supported by the Si-mons Foundation. Work by Omrit Filtser was supported by the Eric and Wendy Schmidt Fund for Strategic Innovation, by the Council for Higher Education of Israel, and by Ben-Gurion University of the Negev.

Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

بصمة

أدرس بدقة موضوعات البحث “Condorcet Relaxation In Spatial Voting'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا