Common belief in monotonic epistemic logic

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


We study the extent to which the notion of common belief may be expressed by a finitary logic. We devise a set of axioms for common belief in a system where beliefs are only required to be monotonic. These axioms are generally less restrictive than those in the existing literature. We prove completeness with respect to monotonic neighborhood models, in which the iterative definition for common belief may involve transfinite levels of mutual belief. We show that this definition is equivalent to the fixed-point type definition that Monderer and Samet elaborated in a probabilistic framework. We show further, that in systems as least as strong as the K-system, our axiomatization for common belief coincides with other existing axiomatizations. In such systems, however, there are consistent sets of formulas that have no model. We conclude that the full contents of common belief cannot be expressed by a logic that admits only finite conjunctions.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)109-123
عدد الصفحات15
دوريةMathematical Social Sciences
مستوى الصوت32
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - أكتوبر 1996
منشور خارجيًانعم


أدرس بدقة موضوعات البحث “Common belief in monotonic epistemic logic'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا