Combinatorial algorithms for distributed graph coloring

Leonid Barenboim, Michael Elkin

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Numerous problems in Theoretical Computer Science can be solved very efficiently using powerful algebraic constructions. Computing shortest paths, constructing expanders, and proving the PCP Theorem, are just a few examples of this phenomenon. The quest for combinatorial algorithms that do not use heavy algebraic machinery, but have the same (or better) efficiency has become a central field of study in this area. Combinatorial algorithms are often simpler than their algebraic counterparts. Moreover, in many cases, combinatorial algorithms and proofs provide additional understanding of studied problems. In this paper we initiate the study of combinatorial algorithms for Distributed Graph Coloring problems. In a distributed setting a communication network is modeled by a graph G = (V,E) of maximum degree Δ. The vertices of G host the processors, and communication is performed over the edges of G. The goal of distributed vertex coloring is to color V with (Δ + 1) colors such that any two neighbors are colored with distinct colors. Currently, efficient algorithms for vertex coloring that require O(Δ + log* n) time are based on the algebraic algorithm of Linial [18] that employs set-systems. The best currently-known combinatorial set-system free algorithm, due to Goldberg, Plotkin, and Shannon [14], requires O(Δ2 + log* n) time. We significantly improve over this by devising a combinatorial (Δ + 1)-coloring algorithm that runs in O(Δ + log * n) time. This exactly matches the running time of the best-known algebraic algorithm. In addition, we devise a tradeoff for computing O(Δ•t)-coloring in O(Δ/t + log* n) time, for almost the entire range 1 < t ;< Δ. We also compute a Maximal Independent Set in O(Δ + log* n) time on general graphs, and in O(logn/ loglogn) time on graphs of bounded arboricity. Prior to our work, these results could be only achieved using algebraic techniques. We believe that our algorithms are more suitable for real-life networks with limited resources, such as sensor, ad-hoc, and mobile networks.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفDistributed Computing - 25th International Symposium, DISC 2011, Proceedings
الصفحات66-81
عدد الصفحات16
مستوى الصوت6950
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2011
منشور خارجيًانعم
الحدث25th International Symposium on Distributed Computing, DISC 2011 - Rome, إيطاليا
المدة: ٢٠ سبتمبر ٢٠١١٢٢ سبتمبر ٢٠١١

سلسلة المنشورات

الاسمLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
مستوى الصوت6950 LNCS
رقم المعيار الدولي للدوريات (المطبوع)0302-9743
رقم المعيار الدولي للدوريات (الإلكتروني)1611-3349

!!Conference

!!Conference25th International Symposium on Distributed Computing, DISC 2011
الدولة/الإقليمإيطاليا
المدينةRome
المدة٢٠/٠٩/١١٢٢/٠٩/١١

بصمة

أدرس بدقة موضوعات البحث “Combinatorial algorithms for distributed graph coloring'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا