Cold Item Integration in Deep Hybrid Recommenders via Tunable Stochastic Gates

Oren Barkan, Roy Hirsch, Ori Katz, Avi Caciularu, Jonathan Weill, Noam Koenigstein

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

A major challenge in collaborative filtering methods is how to produce recommendations for cold items (items with no ratings), or integrate cold items into an existing catalog. Over the years, a variety of hybrid recommendation models have been proposed to address this problem by utilizing items' metadata and content along with their ratings or usage patterns. In this work, we wish to revisit the cold start problem in order to draw attention to an overlooked challenge: the ability to integrate and balance between (regular) warm items and completely cold items. In this case, two different challenges arise: (1) preserving high-quality performance on warm items, while (2) learning to promote cold items to relevant users. First, we show that these two objectives are in fact conflicting, and the balance between them depends on the business needs and the application at hand. Next, we propose a novel hybrid recommendation algorithm that bridges these two conflicting objectives and enables a harmonized balance between preserving high accuracy for warm items while effectively promoting completely cold items. We demonstrate the effectiveness of the proposed algorithm on movies, apps, and articles recommendations, and provide an empirical analysis of the cold-warm trade-off.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفProceedings - 21st IEEE International Conference on Data Mining, ICDM 2021
المحررونJames Bailey, Pauli Miettinen, Yun Sing Koh, Dacheng Tao, Xindong Wu
ناشرInstitute of Electrical and Electronics Engineers Inc.
الصفحات994-999
عدد الصفحات6
رقم المعيار الدولي للكتب (الإلكتروني)9781665423984
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2021
الحدث21st IEEE International Conference on Data Mining, ICDM 2021 - Virtual, Online, نيوزلندا
المدة: ٧ ديسمبر ٢٠٢١١٠ ديسمبر ٢٠٢١

سلسلة المنشورات

الاسمProceedings - IEEE International Conference on Data Mining, ICDM
مستوى الصوت2021-December
رقم المعيار الدولي للدوريات (المطبوع)1550-4786

!!Conference

!!Conference21st IEEE International Conference on Data Mining, ICDM 2021
الدولة/الإقليمنيوزلندا
المدينةVirtual, Online
المدة٧/١٢/٢١١٠/١٢/٢١

ملاحظة ببليوغرافية

Publisher Copyright:
© 2021 IEEE.

بصمة

أدرس بدقة موضوعات البحث “Cold Item Integration in Deep Hybrid Recommenders via Tunable Stochastic Gates'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا