CB2CF: A neural multiview content-to-collaborative filtering model for completely cold item recommendations

Oren Barkan, Noam Koenigstein, Eylon Yogev, Ori Katz

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

In Recommender Systems research, algorithms are often characterized as either Collaborative Filtering (CF) or Content Based (CB). CF algorithms are trained using a dataset of user preferences while CB algorithms are typically based on item profiles. These approaches harness different data sources and therefore the resulting recommended items are generally very different. This paper presents the CB2CF, a deep neural multiview model that serves as a bridge from items content into their CF representations. CB2CF is a “real-world” algorithm designed for Microsoft Store services that handle around a billion users worldwide. CB2CF is demonstrated on movies and apps recommendations, where it is shown to outperform an alternative CB model on completely cold items.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفRecSys 2019 - 13th ACM Conference on Recommender Systems
ناشرAssociation for Computing Machinery, Inc
الصفحات228-236
عدد الصفحات9
رقم المعيار الدولي للكتب (الإلكتروني)9781450362436
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 10 سبتمبر 2019
منشور خارجيًانعم
الحدث13th ACM Conference on Recommender Systems, RecSys 2019 - Copenhagen, الدنمارك
المدة: ١٦ سبتمبر ٢٠١٩٢٠ سبتمبر ٢٠١٩

سلسلة المنشورات

الاسمRecSys 2019 - 13th ACM Conference on Recommender Systems

!!Conference

!!Conference13th ACM Conference on Recommender Systems, RecSys 2019
الدولة/الإقليمالدنمارك
المدينةCopenhagen
المدة١٦/٠٩/١٩٢٠/٠٩/١٩

ملاحظة ببليوغرافية

Publisher Copyright:
© 2019 Copyright is held by the owner/author(s).

بصمة

أدرس بدقة موضوعات البحث “CB2CF: A neural multiview content-to-collaborative filtering model for completely cold item recommendations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا