ملخص
In Recommender Systems research, algorithms are often characterized as either Collaborative Filtering (CF) or Content Based (CB). CF algorithms are trained using a dataset of user preferences while CB algorithms are typically based on item profiles. These approaches harness different data sources and therefore the resulting recommended items are generally very different. This paper presents the CB2CF, a deep neural multiview model that serves as a bridge from items content into their CF representations. CB2CF is a “real-world” algorithm designed for Microsoft Store services that handle around a billion users worldwide. CB2CF is demonstrated on movies and apps recommendations, where it is shown to outperform an alternative CB model on completely cold items.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | RecSys 2019 - 13th ACM Conference on Recommender Systems |
ناشر | Association for Computing Machinery, Inc |
الصفحات | 228-236 |
عدد الصفحات | 9 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781450362436 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 10 سبتمبر 2019 |
منشور خارجيًا | نعم |
الحدث | 13th ACM Conference on Recommender Systems, RecSys 2019 - Copenhagen, الدنمارك المدة: ١٦ سبتمبر ٢٠١٩ → ٢٠ سبتمبر ٢٠١٩ |
سلسلة المنشورات
الاسم | RecSys 2019 - 13th ACM Conference on Recommender Systems |
---|
!!Conference
!!Conference | 13th ACM Conference on Recommender Systems, RecSys 2019 |
---|---|
الدولة/الإقليم | الدنمارك |
المدينة | Copenhagen |
المدة | ١٦/٠٩/١٩ → ٢٠/٠٩/١٩ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2019 Copyright is held by the owner/author(s).