ملخص
Motivated by some open problems posed in [13], we study three problems that seek a low degree subtree T of a graph G =(V, E). In the Min-Degree Group Steiner Tree problem we are given a collection of node subsets (groups), and T should contain a node from every group. In the Min-Degree Steiner k-Tree problem we are given a set R of terminals and an integer k, and T should contain k terminals. In both problems the goal is to minimize the maximum degree of T . In the more general Degrees Bounded Min-Cost Group Steiner Tree problem, we are also given edge costs and individual degree bounds (Formula Presented). The output tree T should obey the degree constraints degT (v) ≤ bv for all (Formula Presented), and among all such trees we seek one of minimum cost. When the input is a tree, an O(log2 n) approximation for the cost is given in [10]. Our first result generalizes [10] – we give a bicriteria (O(log2 n), O(log2 n))-approximation algorithm for Degrees Bounded Min-Cost Group Steiner Tree problem on tree inputs. This matches the cost ratio of [10] but also approximates the degrees within O(log2 n). Our second result shows that if Min-Degree Group Steiner Tree admits ratio ρ then Min-Degree Steiner k-Tree admits ratio ρ · O(log k). Combined with [12], this implies an O(log3 n)-approximation for Min-Degree Steiner k-Tree on general graphs, in quasi-polynomial time. Our third result is a polynomial time O(log3 n)-approximation algorithm for Min-Degree Group Steiner Tree on bounded treewidth graphs.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Combinatorial Algorithms - 31st International Workshop, IWOCA 2020, Proceedings |
المحررون | Leszek Gasieniec, Leszek Gasieniec, Ralf Klasing, Tomasz Radzik |
ناشر | Springer |
الصفحات | 343-354 |
عدد الصفحات | 12 |
رقم المعيار الدولي للكتب (المطبوع) | 9783030489656 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2020 |
الحدث | 31st International Workshop on Combinatorial Algorithms, IWOCA 2020 - Bordeaux, فرنسا المدة: ٨ يونيو ٢٠٢٠ → ١٠ يونيو ٢٠٢٠ |
سلسلة المنشورات
الاسم | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
مستوى الصوت | 12126 LNCS |
رقم المعيار الدولي للدوريات (المطبوع) | 0302-9743 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 1611-3349 |
!!Conference
!!Conference | 31st International Workshop on Combinatorial Algorithms, IWOCA 2020 |
---|---|
الدولة/الإقليم | فرنسا |
المدينة | Bordeaux |
المدة | ٨/٠٦/٢٠ → ١٠/٠٦/٢٠ |
ملاحظة ببليوغرافية
Publisher Copyright:© Springer Nature Switzerland AG 2020.