Approximations of convex bodies by measure-generated sets

Han Huang, Boaz A. Slomka

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Given a Borel measure μ on Rn, we define a convex set by M(μ)=⋃0≤f≤1,∫Rnfdμ=1{∫Rnyf(y)dμ(y)},where the union is taken over μ-measurable functions f: Rn→ [0 , 1] such that ∫Rnfdμ=1 and ∫Rnyf(y)dμ(y) exists. We study the properties of these measure-generated sets, and use them to investigate natural variations of problems of approximation of general convex bodies by polytopes with as few vertices as possible. In particular, we study an extension of the vertex index which was introduced by Bezdek and Litvak. As an application, we prove that for any non-degenerate probability measure μ, one has the lower bound ∫Rn∥x∥Z1(μ)dμ(x)≥cn,where Z1(μ) is the L1-centroid body of μ.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)173-196
عدد الصفحات24
دوريةGeometriae Dedicata
مستوى الصوت200
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يونيو 2019
منشور خارجيًانعم

ملاحظة ببليوغرافية

Publisher Copyright:
© 2018, Springer Nature B.V.

بصمة

أدرس بدقة موضوعات البحث “Approximations of convex bodies by measure-generated sets'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا