Approximation algorithms for cycle packing problems

Michael Krivelevich, Zeev Nutov, Raphael Yuster

نتاج البحث: نتاج بحثي من مؤتمرمحاضرةمراجعة النظراء


The cycle packing number vc(G) of a graph G is the maximum number of pairwise edge-disjoint cycles in G. Computing vc(G) is an NP-hard problem. We present approximation algorithms for computing v c(G) in both the undirected and directed cases. In the undirected case we analyze the modified greedy algorithm suggested in [4] and show that it has approximation ratio O(√log n) where n = |V(G)|, and this is tight. This improves upon the previous O(log n) upper bound for the approximation ratio of this algorithm. In the directed case we present a √n-approximation algorithm. Finally, we give an O(n2/3)-approximation algorithm for the problem of rinding a maximum number of edge-disjoint cycles that intersect a specified subset S of vertices. Our approximation ratios are the currently best known ones and, in addition, provide bounds on the integrality gap of standard LP-relaxations to these problems.

اللغة الأصليةالإنجليزيّة
عدد الصفحات6
حالة النشرنُشِر - 2005
الحدثSixteenth Annual ACM-SIAM Symposium on Discrete Algorithms - Vancouver, BC, الولايات المتّحدة
المدة: ٢٣ يناير ٢٠٠٥٢٥ يناير ٢٠٠٥


!!ConferenceSixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
الدولة/الإقليمالولايات المتّحدة
المدينةVancouver, BC


أدرس بدقة موضوعات البحث “Approximation algorithms for cycle packing problems'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا