ملخص
Let R be a finite set of terminals in a metric space (M,d). We consider finding a minimum size set S ⊆ M of additional points such that the unit-disc graph G[R ∪ S] of R ∪ S satisfies some connectivity properties. In the Steiner Tree with Minimum Number of Steiner Points (ST-MSP) problem G[R ∪ S] should be connected. In the more general Steiner Forest with Minimum Number of Steiner Points (SF-MSP) problem we are given a set D ⊆ R × R of demand pairs and G[R ∪ S] should contains a uv-path for every uv ∈ D. Let Δ be the maximum number of points in a unit ball such that the distance between any two of them is larger than 1. It is known that Δ = 5 in ℝ2. The previous known approximation ratio for ST-MSP was ⌊(Δ+1)/2⌋ +1+ϵ in an arbitrary normed space [15], and 2.5+ϵ in the Euclidean space ℝ2 [5]. Our approximation ratio for ST-MSP is 1+ln(Δ−1)+ϵ in an arbitrary normed space, which in ℝ2 reduces to 1+ln4+ϵ < 2.3863+ϵ. For SF-MSP we give a simple Δ- approximation algorithm, improving the folklore ratio 2(Δ−1). Finally, we generalize and simplify the Δ-approximation of Calinescu [3] for the 2-Connectivity-MSP problem, where G[R ∪ S] should be 2-connected.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Approximation and Online Algorithms - 12th International Workshop, WAOA 2014, Revised Selected Papers |
المحررون | Ola Svensson, Evripidis Bampis |
ناشر | Springer Verlag |
الصفحات | 95-106 |
عدد الصفحات | 12 |
رقم المعيار الدولي للكتب (المطبوع) | 9783319182629 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2015 |
الحدث | 12th International Workshop on Approximation and Online Algorithms, WAOA 2014 - Wroclaw, بولندا المدة: ١١ سبتمبر ٢٠١٤ → ١٢ سبتمبر ٢٠١٤ |
سلسلة المنشورات
الاسم | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
مستوى الصوت | 8952 |
رقم المعيار الدولي للدوريات (المطبوع) | 0302-9743 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 1611-3349 |
!!Conference
!!Conference | 12th International Workshop on Approximation and Online Algorithms, WAOA 2014 |
---|---|
الدولة/الإقليم | بولندا |
المدينة | Wroclaw |
المدة | ١١/٠٩/١٤ → ١٢/٠٩/١٤ |
ملاحظة ببليوغرافية
Publisher Copyright:© Springer International Publishing Switzerland 2015.