Approximating rooted connectivity augmentation problems

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرفصلمراجعة النظراء

ملخص

A graph is called ℓ-connected from U tor if there are ℓ internally disjoint paths from every node u ∈ U to r. The Rooted Subset Connectivity Augmentation Problem (RSCAP) is as follows: given a graph G = (V + r, E), a node subset U ⊆ V, and an integer k, find a smallest set F of new edges such that G + F is k-connected from U to r. In this paper we consider mainly a restricted version of RSCAP in which the input graph G is already (k - 1)-connected from U to r. For this version we give an O(ln |U|)-approximation algorithm, and show that the problem cannot achieve a better approximation guarantee than the Set Cover Problem (SCP) on |U| elements and with |V| - |U| sets. For the general version of RSCAP we give an O(ln k ln |U|)-approximation algorithm. For U = V we get the Rooted Connectivity Augmentation Problem (RCAP). For directed graphs RCAP is polynomially solvable, but for undirected graphs its complexity status is not known: no polynomial algorithm is known, and it is also not known to be NP-hard. For undirected graphs with the input graph G being (k - 1)-connected from V to r, we give an algorithm that computes a solution of size exceeding a lower bound of the optimum by at most (k - 1)/2 edges.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
المحررونSanjeev Asora, Amit Sahai, Klaus Jansen, Jose D.P. Rolim
ناشرSpringer Verlag
الصفحات141-152
عدد الصفحات12
رقم المعيار الدولي للكتب (المطبوع)3540407707, 9783540407706
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2003

سلسلة المنشورات

الاسمLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
مستوى الصوت2764
رقم المعيار الدولي للدوريات (المطبوع)0302-9743
رقم المعيار الدولي للدوريات (الإلكتروني)1611-3349

بصمة

أدرس بدقة موضوعات البحث “Approximating rooted connectivity augmentation problems'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا