Apple yield mapping using hyperspectral machine vision

V. Alchanatis, O. Safren, O. Levi, V. Ostrovsky

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

For orchard growers, it is important to estimate the quantity of fruit on the trees at different stages of their growth. This study proposes a method of automatically detecting apples in digital images that can be used for automating the yield estimation of apples on trees at different stages of their growth by means of machine vision. This investigation concentrates on estimating yield of green varieties of apples. To achieve this goal, hyperspectral imaging was applied. A multistage algorithm was developed which utilizes PCA and ECHO as well as machine vision techniques. The overall correct detection rate was 87.0% with an overall error rate of 14.9%.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفPrecision Agriculture 2007 - Papers Presented at the 6th European Conference on Precision Agriculture, ECPA 2007
المحررون J. V. Stafford
الصفحات555-562
عدد الصفحات8
حالة النشرنُشِر - 2007
منشور خارجيًانعم
الحدث6th European Conference on Precision Agriculture, ECPA 2007 - Skiathos, اليونان
المدة: ٣ يونيو ٢٠٠٧٦ يونيو ٢٠٠٧

سلسلة المنشورات

الاسمPrecision Agriculture 2007 - Papers Presented at the 6th European Conference on Precision Agriculture, ECPA 2007

!!Conference

!!Conference6th European Conference on Precision Agriculture, ECPA 2007
الدولة/الإقليماليونان
المدينةSkiathos
المدة٣/٠٦/٠٧٦/٠٦/٠٧

ملاحظة ببليوغرافية

Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.

بصمة

أدرس بدقة موضوعات البحث “Apple yield mapping using hyperspectral machine vision'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا